УДК 634.737:581.522.4:551.582

С. Л. Приходько, Н. Б. Павловский

КЛИМАТИЧЕСКИЙ АСПЕКТ ИНТРОДУКЦИИ НОВЫХ СЕВЕРОАМЕРИКАНСКИХ ТАКСОНОВ ГОЛУБИКИ В БЕЛОРУССКОЕ ПОЛЕСЬЕ

Выполнен анализ многолетних данных основных погодно-климатических показателей Полесского региона Беларуси на примере Ганцевичского района Брестской области. Установлены существенные изменения термического режима климата в сторону потепления, на основании чего дан прогноз о возможности выращивания более теплолюбивых сортов голубики высокорослой (Vaccinium corymbosum) в Белорусском Полесье в долгосрочной перспективе.

This article analyses long-term meteorological and climatic data for Belarusian Polesia, namely, the Gantsevichi district of the Brest region. The authors have established significant thermal regime changes towards warming, which makes it possible to forecast the long-term possibility of cultivating more heatloving varieties of the Highbush Blueberry (Vaccinium corymbosum) in Belarussian Polesia.

Ключевые слова: Белорусское Полесье, *Vaccinium corymbosum*, голубика высокорослая, интродукция, изменение климата, долгосрочный прогноз.

Key words: Belarussian Polesia, *Vaccinium corymbosum*, highbush blueberry, introduction, climate change, long-term forecast.

Введение

Н.И. Вавилов [1, с. 547] указывал, что подбирая виды и сорта для интродукции, необходимо считаться с климатическими и почвенными условиями их произрастания, по возможности брать сорта из мест более или менее сходных с предполагаемым районом интродукции. В естественных условиях Беларуси повсеместно произрастают представители рода *Vaccinium*, в том числе голубика топяная (*V. uliginosum*), следовательно, в стране имеются адекватные эдафические условия. Основной фактор, который может ограничить интродукцию новых таксонов голубики, — климат.

К настоящему времени в мире создано более 250 сортов голубики, классифицированных по климатическим требованиям, биологическим особенностям и функциональному назначению на группы (табл. 1), называемые в зарубежной литературе коммерческими [2, с. 539]. Интродукционные испытания и практический опыт культивирования разных сортов голубики в Беларуси показали, что для природно-климатических условий республики представляют интерес сорта трех групп: северной высокорослой, полувысокорослой и низкорослой [3, с. 27]. Это самые холодостойкие таксоны голубики.

Таблица 1 Коммерческие группы сортов голубики секции *Cyanococcus*

Группа сортов	Высота растений, м	Морозостойкость, °С	Продолжительность холодовой обработки, ч
Северная высокорослая	1,5-2,5	-2030	>800
Южная высокорослая	2,0-2,5	05	<800
Прутьевидная (Эша)	1,0-3,0	0	<650
Низкорослая	0,2-0,7	-30	>1000
Полувысокорослая	0,9-1,5	-2530	>800

В последние десятилетия глобальное изменение климата из узкоспециального естественнонаучного вопроса превратилось в важнейший аспект новой реальности, к которой отдельные страны и все человечество вынуждены приспосабливать свою хозяйственную деятельность. Изменение климата не только представляет собой масштабную природную опасность, но и является катализатором разнонаправленного изменения во многих сферах деятельности [4, с. 594]. В частности, изменение климата в сторону потепления дает возможность расширять биологическое разнообразие стран, привлекая к интродукции растения, более требовательные к температурным показателям.

Цель исследования — теоретический прогноз успешной интродукции в Белорусское Полесье новых таксонов голубики высокорослой.

Задачи: 1) характеристика погодно-климатических условий района исследований; 2) анализ динамики основных погодно-климатических

показателей Ганцевичского района; 3) сравнительный анализ погодноклиматических показателей района интродукции и регионов происхождения сортов голубики; 4) теоретический прогноз возможности возделывания более теплолюбивых сортов голубики высокорослой на долгосрочную перспективу (100 лет).

Материалы и методы

Материалом для работы стали погодно-климатические данные, зафиксированные метеорологической станцией г. Ганцевичи Брестской области Республики Беларусь за период с 1967 по 2014 г. Исследуемый временной промежуток, с 1990 по 2014 г., был поделен на пятилетки для более презентабельной оценки динамики и сравнительного анализа погодно-климатических показателей. В качестве базовых показателей использовали средние многолетние данные за период 1967—1985 гг.

Для каждой анализируемой пятилетки были определены следующие погодно-климатические показатели: среднесуточные температуры воздуха за кесяц, среднесуточные температуры воздуха за год, абсолютные минимальные температуры, суммы температур выше $0\,^{\circ}$ С, число дней с температурой выше $0\,^{\circ}$ С, суммы активных температур выше $10\,^{\circ}$ С, количество дней с температурой выше $10\,^{\circ}$ С, среднее за месяц и годовое количество осадков.

Статистическую обработку данных проводили на ПК с помощью программы «Excel».

Результаты и обсуждение

1. Погодно-климатическая характеристика района исследований

На территории Беларуси выделяют 3 агроклиматические области (рис. 1).

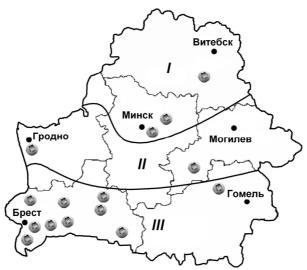


Рис. 1. Агроклиматические области Беларуси: I — северная, II — центральная, III — южная

Ганцевичский район относится к центральной агроклиматической области Беларуси. Северной частью район примыкает к Барановичской равнине, южной — к Припятскому Полесью. По характеру климатических условий входит в умеренно теплую и влажную южную климатическую область. Климат региона формируется под влиянием воздушных масс с Атлантического океана, приносящих летом дождливую и пасмурную погоду, зимой — частые оттепели. Данная зона охватывает большую часть Брестской и Гомельской областей, всю Полесскую низменность и Прибугскую равнину [5, с. 100].

Динамика погодно-климатических показателей в районе исследований

Термические условия района в анализируемый период характеризовались выраженной изменчивостью. Достаточно холодным был декабрь в период 1995—1999 гг., средняя температура которого составила $-6,2\,^{\circ}$ С, что в 1,9 раза ниже средней многолетней, необычно теплым — март 1990—1994 гг., с температурой 2,1 $^{\circ}$ С, что превысило норму на 333 % (табл. 2).

Средняя минимальная температура увеличилась с -27,0 до -24,9 °C (см. табл. 3). В исследуемый период абсолютно минимальная температура воздуха, составлявшая -30,9 °C, была отмечена в 2010-2014 гг., что на 7,1 °C выше чем, в базовый период (-38,0 °C) [6, с. 83].

Анализ динамики среднесуточных температур воздуха за последние 25 лет показывает, что она была ниже базового уровня только в 1996 г. (рис. 2). В 1998 г. данный показатель находился на уровне среднего многолетнего. В остальные годы (92% срока исследования) годовая среднесуточная температура воздуха была выше базовой величины.

Сравнительный анализ термических данных за два 25-летних периода указывает на то, что за последние полвека отчетливо наблюдается тенденция к повышению температурных показателей в районе исследований (см. табл. 4). Так, в наиболее холодном месяце года — январе — средняя температура воздуха стала выше на 2,4 $^{\circ}$ С по сравнению с контролем и составила -3,4°C. Средняя температура воздуха самого теплого месяца — июля — увеличилась на 1 °C и составила 18,8°C. Среднесуточная температура воздуха за год в анализируемые 25 лет стала выше на 1,1°C по сравнению с базовым периодом и составила 7,4°C. В результате увеличения среднесуточной температуры воздуха возросла сумма положительных температур на 13 % (347°) и активных – на 21 % (438°) (см. табл. 5). Продолжительность периода с положительной температурой воздуха увеличилась на 15 суток, вегетации – на 11. Об увеличении в Беларуси периодов с температурами, превышающими 5, 10 и 15°C, сообщает О.В. Давыденко [7, с. 109]. Автор также указывает на увеличение суммы активных температур, отмечает тенденцию снижения территориальной контрастности и делает заключение о потеплении климата в Беларуси. На потепление климата и увеличение средней годовой температуры на 1,2-1,4 °C в Беларуси в последние три десятилетия указывает В.Ф. Логинов [8, с. 126], что также согласуется с нашими данными.

Динамика средних за пятилетку среднесуточных температур воздуха (верхняя цифра, $^{\circ}$ С) и их отклонений от нормы (нижняя цифра, $^{\prime \phi}$) в Ганцевичском районе в 1990—2014 гг.

III IV VI VIII VIII IX X XIII	- 1	,		***		,		Месяц	****	ì	;		****	Средняя
-0,9 6,4 13,1 16,3 17,8 16,5 12,1 6,5 1,3 -3,2 100 100 100 100 100 100 100 100 7,11,4 7,5±0,8 12,9±1,0 15,8±0,7 18,0±1,2 17,6±1,3 6,5±0,7 0,8±2,2 -1,7±0,8 333 117 98 97 101 104 98 109 23 6 5,7±0,8 7,8±1,8 13,8±1,1 16,0±0,6 18,8±1,1 17,8±0,5 11,7±0,6 7,5±0,9 2,7±0,9 -2,6±2,6 288 122 105 98 106 97 115 208 118 7,1±2,9 8,3±0,5 13,2±0,7 16,8±0,4 17,4±0,8 13,1±0,4 7,1±0,8 2,3±1,0 -0,8±1,4 111 130 101 103 106 108 109 177 175 4±2,1 8,7±0,6 13,2±0,7 12,2±0,9 2,2±0,9 2,2±2,3 -2,2±2,3	I		П	Ш	IV	Λ	VI	VII	VIII	IX	X	XI	XII	годовая
100 100 <td>-5,8</td> <td></td> <td>-4,6</td> <td>6'0-</td> <td>6,4</td> <td>13,1</td> <td>16,3</td> <td>17,8</td> <td>16,5</td> <td>12,1</td> <td>6,5</td> <td>1,3</td> <td>-3,2</td> <td>6,3</td>	-5,8		-4,6	6'0-	6,4	13,1	16,3	17,8	16,5	12,1	6,5	1,3	-3,2	6,3
111,4 7,5±0,8 12,9±1,0 15,8±0,7 18,0±1,2 17,6±1,2 12,2±1,3 6,5±0,7 0,8±2,2 -1,7±0,8 333 117 98 97 101 107 101 100 62 146 ,5±1,8 7,6±1,3 13,2±1,2 17,9±1,0 18,3±1,0 17,2±0,6 11,9±0,9 7,1±0,3 0,3±2,2 -6,2±2,7 155 119 101 110 103 104 98 109 2,3±0,9 -2,6±2,6 288 122 105 98 106 108 97 115 208 118 1142,9 8,3±0,5 13,2±0,7 16,8±0,4 17,4±0,8 13,1±0,4 7,1±0,8 2,3±1,0 -0,8±1,4 111 130 101 103 106 105 108 109 177 175 242,1 8,7±0,6 13,8±0,7 12,8±0,6 12,8±0,6 6,9±1,0 3,8±0,9 -2,2±2,3 255 136 113 109 113<	100		100	100	100	100	100	100	100	100	100	100	100	100
333 117 98 97 101 107 101 100 62 146 5±1,8 7,6±1,3 13,2±1,2 17,9±1,0 18,3±1,0 17,2±0,6 11,9±0,9 7,1±0,3 0,3±2,2 -6,2±2,7 155 119 101 110 103 104 98 109 23 6 8 7,±0,8 7,8±1,8 13,8±1,1 16,0±0,6 18,8±1,1 17,8±0,5 11,7±0,6 7,5±0,9 2,7±0,9 -2,6±2,6 288 122 105 98 106 175 20,8±1,4 118 11±2,9 8,3±0,5 13,2±0,7 16,8±0,6 18,9±0,4 17,4±0,8 13,1±0,4 7,1±0,8 2,3±1,0 -0,8±1,4 111 130 101 103 106 105 107 175 175 4±2,1 8,7±0,6 12,2±0,7 12,8±0,6 6,9±1,0 3,8±0,9 -2,2±2,3 131 255 136 113 113 106 106	-0,4±1,0		2,2±2,5		7,5±0,8	12,9±1,0	15,8±0,7	18,0±1,2	17,6±1,2	12,2±1,3	6,5±0,7	$0,8\pm 2,2$	-1,7±0,8	7,4±0,4
5±1,8 7,6±1,3 13,2±1,2 17,9±1,0 18,3±1,0 17,2±0,6 11,9±0,9 7,1±0,3 0,3±2,2 -6,2±2,7 155 119 101 110 103 104 98 109 23 6 6 7,±0,8 7,8±1,8 13,8±1,1 16,0±0,6 18,8±1,1 17,8±0,5 11,7±0,6 7,5±0,9 2,7±0,9 -2,6±2,6 288 122 105 98 106 108 97 115 208 118 11±2,9 8,3±0,5 13,2±0,7 16,8±0,6 18,9±0,4 17,4±0,8 13,1±0,4 7,1±0,8 2,3±1,0 -0,8±1,4 111 130 101 103 106 105 10,2±0,7 12,8±0,6 6,9±1,0 3,8±0,9 -2,2±2,3 255 136 113 113 110 113 113 106 106 292 131	193		152	333	117	86	26	101	107	101	100	62	146	117
155 119 101 103 104 98 109 23 6 1,740,8 7,841,8 13,841,1 16,040,6 18,841,1 17,840,5 11,740,6 7,540,9 2,740,9 -2,642,6 288 122 105 98 106 108 97 115 208 118 0,142,9 8,340,5 13,240,7 16,840,6 18,940,4 17,440,8 13,140,4 7,140,8 2,341,0 -0,841,4 111 130 101 103 106 105 108 177 175 1,442,1 8,740,6 14,840,5 17,740,7 20,240,9 18,740,7 12,840,6 6,941,0 3,840,9 -2,242,3 255 136 113 113 113 106 106 292 131	-4,4±2,3		$-2,1\pm3,2$	5±1,8	7,6±1,3	13,2±1,2	17,9±1,0	18,3±1,0	17,2±0,6	$11,9\pm0,9$	7,1±0,3	$0,3\pm 2,2$	-6,2±2,7	9,8±0,6
1,7±0,8 7,8±1,8 13,8±1,1 16,0±0,6 18,8±1,1 17,8±0,5 11,7±0,6 7,5±0,9 2,7±0,9 -2,6±2,6 288 122 105 98 106 108 97 115 208 118 0,1±2,9 8,3±0,5 13,2±0,7 16,8±0,6 18,9±0,4 17,4±0,8 13,1±0,4 7,1±0,8 2,3±1,0 -0,8±1,4 111 130 101 103 106 105 107 175 175 1,4±2,1 8,7±0,6 14,8±0,5 17,7±0,7 20,2±0,9 18,7±0,7 12,8±0,6 6,9±1,0 3,8±0,9 -2,2±2,3 255 136 113 113 116 106 106 292 131	124		154	155	119	101	110	103	104	86	109	23	9	108
288 122 105 98 106 108 97 115 208 118 7.1±2,9 8,3±0,5 13,2±0,7 16,8±0,6 18,9±0,4 17,4±0,8 13,1±0,4 7,1±0,8 2,3±1,0 -0,8±1,4 111 130 101 103 106 105 108 109 177 175 4±2,1 8,7±0,6 14,8±0,5 17,7±0,7 20,2±0,9 18,7±0,7 12,8±0,6 6,9±1,0 3,8±0,9 -2,2±2,3 255 136 113 113 106 106 292 131	-3,5±0,9		-2,1±2,3				16,0±0,6	18,8±1,1	17,8±0,5	11,7±0,6	2,5±0,9	2,7±0,9	$-2,6\pm2,6$	7,5±0,4
(142,9) 8,340,5 13,240,7 16,840,6 18,940,4 17,440,8 13,140,4 7,140,8 2,341,0 -0,841,4 111 130 101 103 106 105 108 109 177 175 442,1 8,740,6 14,840,5 17,740,7 20,240,9 18,740,7 12,840,6 6,941,0 3,840,9 -2,242,3 255 136 113 109 113 113 106 106 292 131	140		154	288	122	105	86	106	108	26	115	208	118	119
111 130 101 103 106 105 108 109 177 175 4+2,1 8,7±0,6 14,8±0,5 17,7±0,7 20,2±0,9 18,7±0,7 12,8±0,6 6,9±1,0 3,8±0,9 -2,2±2,3 255 136 113 109 113 113 106 106 292 131	-2,7±2,3		-4,2±2,6	1±2,9	8,3±0,5	_	16,8±0,6		17,4±0,8	$13,1\pm0,4$	7,1±0,8	$2,3\pm1,0$	-0,8±1,4	7,5±0,6
44±2,1 8,7±0,6 14,8±0,5 17,7±0,7 20,2±0,9 18,7±0,7 12,8±0,6 6,9±1,0 3,8±0,9 -2,2±2,3 255 136 113 113 113 109 113 113 106 292 131	153		109	111	130	101	103	106	105	108	109	177	175	119
255 136 113 109 113 113 106 106 292 131	-5,9±1,9		-4,0±2,8	,4±2,1			17,7±0,7	20,2±0,9		$12,8\pm0,6$	6,9±1,0	3,8±0,9	-2,2±2,3	7,7±0,3
	86		113	255	136	113	109	113	113	106	106	292	131	122

Таблица 3

Динамика средних минимальных температур воздуха за пятилетку (верхняя цифра, °C) и их отклонений от нормы (нижняя цифра, %) в Ганцевичском районе в 1990—2014 гг.

1 I I I I I I I I I I I I I I I I I I I					Месяп	СЯЦ						Средняя
	II	III	IV	Λ	IA	IΙΛ	IIIA	XI	Χ	IX	IΙΧ	годовая
	-23,0	-17,0	-4,0	-1,0	4,0	0′9	4,0	-2,0	0'9-	-11,0	-18,0	0'27-
(1967 - 1985) 100	100	100	100	100	100	100	100	100	100	100	100	100
-18,9	-17,8	-12,2	-4,4	6′0	3,7	6,1	4,3	6′0	-1,5	-8,5	-14,9	-22,1
121 121	123	128	06	170	93	102	108	215	175	123	117	118
-24,2	-20,4	-16,1	-5,8	-2,0	0′9	8,0	4,7	-1,0	-5,2	-15,1	-27,4	-29,4
66 6661 – 6661	111	105	22	0	150	133	118	120	113	63	48	91
7,02-	-15,4	-10,3	0′9-	6′0-	2,3	6'2	2,9	0,2	-6,4	-7,4	-11,1	-23,1
2000 - 2004 114	133	139	20	110	28	132	148	210	93	133	138	114
9,005 2000	-21,0	-14,5	-4,2	6′0-	4,6	8′9	2,6	9′0-	-4,3	-10,2	-12,7	-24,2
114	109	115	62	110	115	113	140	170	128	107	129	110
-22,9	-18,9	-14,7	-5,7	2′0	0'9	0′8	6′9	0′0	-5,6	-8,2	-14,9	-25,6
2010 - 2014 105	118	114	22	130	150	133	148	200	107	126	117	105

Таблица 4

Динамика основных климатических показателей Ганцевичского района в период с 1967 по 2014 гг.

100	Сред темпера:	Средняя температура, °С	,	Средняя годовая	Число дней	Сумма	Сумма активных	Длина вегетацион-	Осадки,
ноидагт	января июля		температура, °С	температура воздуха, °С	с температурои > 0 °C, сут	16M116Pa1yP > 0 °C	температур > 10 °C	ного периода, сут	MM
1967 – 1985	-5,8	17,8	-27,0	6,3	240	2715	2040	147	289
1990 - 2014	-3,4	8′81	- 24,9	7,4	255	3062	2478	158	661
Средние много-									
летние	-4,6	18,3	-26,0	6′9	247	2889	2259	153	674

Таблица 5

Динамика суммы положительных и активных температур (≥10 °C) воздуха, количество дней с температурой воздуха ≥10 °C

	Сумма	Число дней	Сумма	Число дней
Период	температур	с температурой	температур	с температурой
	≥0°C	≥10°C, сут	≥0°C	≥10°C, сут
Контроль				
(1967 - 1985)	2 715/100 %	2 040/100 %	2 715/100 %	2 040/100 %
1900-1994	2 861±64/105 %	2 308±135/113 %	2 861±64/105 %	2 308±13/113 %5
2000 - 2004	3 060±87/113 %	2 475±74/121 %	3 060±87/113 %	2 475±74/121 %
2010 - 2014	3 265±98/120 %	2 650±24/130 %	3 265±98/120 %	2 650±24/130 %

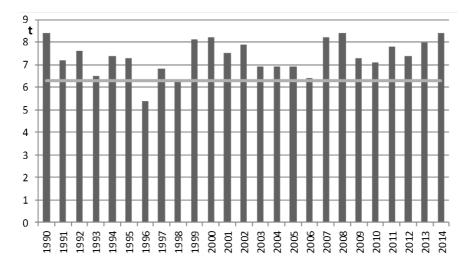


Рис. 2. Динамика средней годовой среднесуточной температуры воздуха (п) на фоне средней многолетней (-) в Ганцевичском районе (Беларусь) с 1990 по 2014 г.

Распределение атмосферных осадков по месяцам было неравномерным и существенно отклонялось от базовых данных (табл. 6). Наибольшее их отклонение от нормы в сторону увеличения характерно для июля 2005—2009 гг. и мая 2010—2014 гг., оно составило 138 %. Самым засушливым был август 1990—1994 гг., когда выпало лишь 42 % осадков.

Обращает на себя внимание тот факт, что в трех пятилетках из пяти наблюдался дефицит атмосферных осадков в августе. Следует отметить, что недостаток почвенной влаги во второй половине лета отрицательно сказывается не только на росте и развитии растений голубики, но и на созревающих плодах и на закладке генеративных почек урожая будущего года. Голубика имеет поверхностную корневую систему и не может поглощать воду из более глубоких горизонтов почвы. Для решения данной проблемы насаждения голубики оснащают искусственным орошением.

Несмотря на то, что количество атмосферных осадков по месяцам существенно варьировало, их годовая величина была близка к норме.

51

Таблица 6

Динамика средних за пятилетку атмосферных осадков (верхняя цифра, мм) и их отклонений от нормы (нижняя цифра, %)
в Ганцевичском районе в 1990—2014 гг.

Поэтор						Месяц	ΊЖ						Средняя
тоидыт	Ι	II	${ m III}$	IV	Λ	M	ΠΛ	VIII	XI	×	IX	IIX	годовая
Контроль	41	38	36	49	62	28	92	22	28	54	20	49	687
(1967 - 1985)	100	100	100	100	100	100	100	100	100	100	100	100	100
1990 1994	38±10	31+5	44 + 14	38±8	63±10	69±23	89±54	33±13	9€∓68	61±22	47±14	50±17	651±61
1990 — 1994	92	81	113	77	102	68	96	42	154	114	93	102	95
1005 1000	25±10	46±13	6 T 27	47±7	53±11	97±24	82748	66±28	81∓99	32±12	52±12	47±10	06 + 659
1777 — 1777	62	122	601	92	85	124	76	98	114	26	104	96	96
7000 0000	44±6	41+10	2748	45±11	47±6	95±27	121±32	6 T 65	45±19	60±35	45±11	41±14	676±15
2000 — 200 4	108	601	83	91	75	121	132	22	82	111	06	84	86
2006 3008	46±17	31±2	45±7	40±16	84±23	68±31	127±50	77±34	37±18	37±21	38±6	40±18	669±42
2002 — 2002	113	18	115	81	135	87	138	100	64	89	77	81	26
100 0100	53±13	9∓97	6∓97	38±12	86±21	101 ± 16	77±34	81±31	45±17	25±10	50±24	43±7	649±42
Z010 — Z014	130	<i>L</i> 9	99	22	138	129	84	106	22	45	101	88	95

Сравнительный анализ климатических условий регионов происхождения голубики высокорослой и района исследования

Основными регионами происхождения и возделывания голубики высокорослой являются штаты Флорида, Индиана, Западная Вирджиния, Миннесота, Северная Каролина, Нью-Джерси, Массачусетс, Мэн в США и Новая Шотландия и Онтарио в Канаде. Проанализируем климатические показатели этих регионов и Ганцевичского района (табл. 7).

Белорусское Полесье наиболее близко по термическим условиям к штатам Мэн и Миннесота в США, Новая Шотландия и Онтарио в Канаде, где возделывают сорта северной высокорослой, полувысокорослой и низкорослой голубики.

По количеству осадков Ганцевичский район сопоставим со штатом Миннесота, в остальных сравниваемых регионах США и Канады осадков выпадает значительно больше. Как уже отмечалось выше, недостаток почвенной влаги можно восполнить с помощью искусственного орошения.

Погодно-климатический прогноз для Белорусского Полесья на долгосрочную перспективу

Математический анализ динамики погодных показателей района исследований за последние 50 лет показал, что каждые 10 лет среднесуточная температура воздуха января возрастала на 0,96 °C, июля — на 0,40 °C, а среднегодовая температура воздуха — на 0,44 °C. Число дней с температурой выше 0 °C увеличилось на 6, суммы температур выше 0 °С — на 139 °С, число суток вегетационного периода — на 4,4 дня, а суммы активных температур выше +10 °C — на 175 °C. На основе этих показателей нами вычислена прогнозная динамика основных климатические характеристик Ганцевичского района до 2114 г. (см. табл. 8).

При сохранении нынешней тенденции изменения климата через 100 лет температурные условия и продолжительность вегетационного периода в Ганцевичском районе будут сопоставимы с теперешними погодными условиями штатов Северная Каролина, Западная Вирджиния, Нью-Джерси и Индиана, где возделывают сорта южной высокорослой голубики.

Выводы

Анализ данных основных погодно-климатических показателей Полесского региона Беларуси на примере Ганцевичского района за последние 50 лет указывает на тенденцию к изменению климата в сторону потепления. При условии сохранения направленности термического режима климата к 2044 г. климатические условия района исследований будут сравнимы с таковыми штата Массачусетс, к 2094 г. — Индиана, а к 2114 г. — Нью-Джерси. Это позволяет предположить возможность увеличения сортиментного разнообразия голубики посредством привлечения к интродукции более теплолюбивых таксонов данной культуры, а именно сортов южной высокорослой голубики. В настоящее время расширение сортового разнообразия данной культуры возможно за счет интродукции и селекции северных высокорослых, полувысокорослых и низкорослых таксонов голубики.

Основные погодно-климатические показатели районов выращивания голубики высокорослой и района исследования

			•		.	•		
Вотион	Средняя тег °(емпература, °С	Абсолютная минимальная	Число дней	Cymmbi	Суммы активных	Длина	Осадки,
10101	января	ИЮЛЯ	температура, °С	> 0 °C, cyr	> 0 °C	температур >10 °C	периода, сут	MM
Флорида	14,2	27,2	12,6	365	7 300	7 300	365	1310
Северная Каролина	3,6	26,2	2,6	365	5 500	4 700	235	1 230
Западная Вирджиния	3,2	25,8	2,2	365	5 400	4 600	235	1 060
Нью-Джерси	9′0-	22,8	-2,1	280	4 400	3 900	210	1 204
Индиана	-4,1	23,0	-10,6	300	4 200	3 900	210	8 90
Массачусетс	-10,7	22,4	-19,9	260	3 500	3 100	180	1 024
Онтарио	-5,5	20,9	-29,4	180	3 160	2 800	155	840
Миннесота	-10,7	22,4	9′06-	200	3 300	2 500	165	069
Мэн	-4,3	16,0	-16,9	200	3 000	2 500	165	1 200
Новая Шотландия	-4,3	16,0	-17,8	180	2 600	2 300	155	1 200
Ганцевичи	-4,6	18,3	6'08-	247	2 889	2 259	153	674

Протноз основных климатических показателей Ганцевичского района на 100 лет

Средняя температура, °С 	—	Средняя годовая	Средняя	Число дней с температурой	Суммы температур	Суммы активных	Длина вегетационного
июля температура, °C	гемпература, °С		температура, °С	> 0°, cyT	> 0°, °C	> 10°, °C	периода, сут
18,8 7,4	7,4		-30,9	255	3 062	2 478	158
19,2 7,8	8'2		-28,1	261	3 201	2 653	162
19,6 8,3	8,3		-25,2	267	3 340	2 828	167
20,0 8,7	2′8		-22,4	273	3 478	3 004	171
20,4 9,2	9,2		-19,6	279	3 617	3 179	176
20,8	9'6		-16,7	285	3 756	3 354	180
21,2 10,0	10,0		-13,9	291	3 895	3 529	184
21,6 10,5	10,5		-11,0	297	4 034	3 704	189
22,0 10,9	10,9	$\overline{}$	-8,2	303	4 172	3 880	193
22,4 11,4	11,4		-5,3	309	4 311	4 055	198
22,8 11,8	11,8		-2,5	315	4 450	4 230	202

Список литературы

- 1. *Вавилов Н.И.* Избранные труды. Т. 5. : Проблемы происхождения, географии, генетики, селекции растений, растениеводства и агрономии. М. ; Л., 1965.
- 2. Павловский Н.Б. Систематическое положение и классификация сортов голубики секции *Cyanococcus* // Плодоводство. 2013. Т. 25. С. 533—543.
- 3. Титок В.В., Веевник А.А., Павловский Н.Б. Голубика высокорослая инновационная культура премиум-класса // Наука и инновации. 2012. № 6 (112). С. 25-27.
 - 4. Мировая экономика в начале XXI века: учеб. пособие. М., 2013.
- 5. *Павловский Н.Б., Рубан Н.Н.* Сортовая брусника в Белорусском Полесье / под общ. ред. Ж. А. Рупасовой. Минск, 2000.
- 6. *Агроклиматические* ресурсы Белорусской ССР: материалы гидрометеорологических наблюдений / под ред. М.А. Гольберга, В.И. Мельника. Минск, 1985.
- 7. Давыденко О.В. Агроклиматическое районирование Беларуси в условиях изменения климата // Вестник Белорусского государственного университета. 2009. № 1. С. 106-111.
- 8. Логинов В. Ф. Климатические исследования в институте // Природопользование. 2012. Вып. 22. С. 123-140.

Об авторах

Светлана Леонидовна Приходько — асп., Балтийский федеральный университет им. И. Канта, Калининград.

E-mail: sinitskayas@gmail.com

Николай Болеславович Павловский — канд. биол. наук, Центральный ботанический сад, Национальная академия наук Беларуси, Ганцевичи.

E-mail: pavlovskiy@tut.by

About the authors

Svetlana Prikhodko, PhD student, I. Kant Baltic Federal University, Kaliningrad. E-mail: sinitskayas@gmail.com

Dr Nikolai Pavlovski, Central Botanical Garden of the National Academy of Sciences of Belarus, Gantsevichi.

E-mail: pavlovskiy@tut.by